
Linked Lists Part 2

Linked List Implementation

Checkout SinglyLinkedList project from SVN (Homework)
Checkout LinkedListSimpleGeneric
Checkout CoolPair

Let’s modify our simple linked list to
take arbitrary objects!

• Two ways:

– Object

– Generics

What if we just use object?
LinkedList objectList = new LinkedList();
objectList.addAtBeginning(new Dog("Max", 15));
objectList.addAtBeginning(new Dog("Sammy", 9));
objectList.addAtBeginning(new Dog("Gracie", 4));

System.out.println("Average age is: " +
getAverageAge(objectList));

Output: Average age is: 9.333333333333334

The problem with Object
//But what happens if we add a car to that list?
objectList.addAtEnd(new Car("Toyota", "Camry"));

System.out.println("Average age is: " + getAverageAge(objectList));

Output:
Exception in thread "main" java.lang.ClassCastException:

withObject.Car cannot be cast to withObject.Dog

Java allows us to add a

Car to a list of Dogs,

because it only knows the

Node values are stored as

objects

public static double getAverageAge(LinkedList objectList) {
double totalAge = 0;
int count = 0;
for (Object o : objectList) {

Dog d = (Dog)o;
totalAge += d.getAge();
count++;

}
return totalAge/count;

}

This cast is what causes the

previous code to fail (when it

tries to cast a Car to a Dog).

But we must have the cast to

get the age field of the Dog

objects.

Generics Prevent Type Errors
LinkedList<Dog> dogList = new LinkedList<Dog>();
dogList.addAtBeginning(new Dog("Max", 15));
dogList.addAtBeginning(new Dog("Sammy", 9));
dogList.addAtBeginning(new Dog("Gracie", 4));
//But what happens if we add a car to that list?
dogList.addAtEnd(new Car("Toyota", "Camry"));

dogList is declared as a generic list of Dog

objects, so only Dog objects (and objects

that inherit from Dog) can be put in this list.

Attempting to insert an object that IS NOT a

Dog into the list causes a compilation error

(better since we’d rather it crash for us and

not our clients!).

public static double getAverageAge(LinkedList<Dog> dogList) {
double totalAge = 0;
int count = 0;
for (Dog d : dogList) {

totalAge += d.getAge();
count++;

}
return totalAge/count;

}

The enhanced for loop no longer needs a

cast, because it knows that the objects in the

list are Dog objects. No possibility for a

runtime error.

• Type parameters:
– class DLList<E>

• Bounds:
– class DLList<E extends Comparable>
– class DLList<E extends Comparable<E>>
– class DLList<E extends Comparable<? super E>>

• Generic methods:
– public static <T> void shuffle(T[] array)

• http://docs.oracle.com/javase/tutorial/java/generics/index.html

Generics Advanced

What are iterators and why do they
exist?

• Iterators are objects designed to encapsulate a
position in a data structure – in the case, a
pointer to a current (and previous) node in a
list

• Your textbook has a detailed discussion of the
operation of linked list iterators, including lots
of sample code

Accessing the Middle of a LinkedList

Why iterators?
They let you write nice for loops!

Enhanced For Loop

for (String s : list) {

// do something

}

What Compiler Generates

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}

Practice

• Weird warmup: Add an iterator to CoolPair<T>
– Weird: why iterate over a Pair? Oh well.

• Make LinkedListGeneric generic and add an
iterator to it. Notes:
– T could be any object. So will need to change == to

.equals() when comparing things of type T.
• But still use == for Nodes: if (this.current == null) { …}

– When adding <Integer> to tests, also need to change
the int[] array passed in to Integer[] to match.

– You can test your iterator using a foreach loop in main
– Get help! This is practice for the next assignment.

Homework:
Implementing SinglyLinkedList

• Just a step up from the ones we’ve written,
but more focused on implementing the
essentials from the java.util.List interface

• Will have the usual linked list behavior

– Fast insertion and removal of elements

• Once we know where they go using an iterator

– Slow random access

TEAM PROJECT WORK TIME

